
GUI development with wxGlade

Johan Vromans
Squirrel Consultancy

<jvromans@squirrel.nl>

This document is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

In the beginning ...
In the beginning was the command line. To get the computer to do something, the user

typed a command to the computer. In the early days, the commands were typed on

punched paper tape, or punched cards. Later, the commands could be typed in at a type-

writer-like interactive terminal.

Although powerful, using this method to control a computer required knowledge of a vast

collection of commands, with their arguments, options, and variations.

Around 1980 a new method to interact with a computer was developed: the Graphical

User Interface, conveniently called GUI. GUIs displays visual elements such as icons, win-

dows, and other gadgets. As we all know, the precursor to the GUI was invented by

researchers at the Stanford Research Institute, and later brought to maturity by researchers

at Xerox PARC. It was adapted by Apple in 1983, then by Microsoft in 1985, and the rest,

as they say, is history.

Examples of systems that currently use GUIs are Mac OS, Microsoft Windows, NEXTSTEP,

Palm OS and the X Window System.

GUI Basics
A typical GUI application looks something like this:

24/10/2005 1

Generally, this is called the application window. It has a title bar at the top, with icons to

close and resize it. In the window itself you can see a menu bar with pull-down menus,

some windows with information, scrollbars, buttons, and a status bar at the bottom.

Technically, all the items on the screen are windows, some large, some small. Some con-

tain other windows. A button is a small window that has a border and a text in it. A scroll-

bar is a window that has small triangle-buttons and a slider. The buttons and the slider are

also windows. When a button is clicked, it is temporary replaced by another window that

looks like a pressed button. Simultaneously, it has to trigger some application function.

To build an application by grouping windows like this would be a tedious job, and a great

pain to accomplish. For this purpose, window systems have been providing toolkits with

pre-constructed items called widgets. Using the appropriate toolkit, building the applica-

tion becomes significantly easier. A button is now a widget that knows how to display its

text, and automatically handles the changing appearance when clicked. The scrollbar is a

single widget that knows how to move the slider, and feeds back on the actual position.

But there is more. A scrollable window plus its scrollbars is itself a widget and knows how

to deal with content and slider changes. Building a GUI application using a suitable toolkit

becomes a feasible job.

Microsoft Windows and Mac OS have standard toolkits to be used for GUI applications.

For the X Window System many popular widget toolkits exist, such as Motif (CDE), Qt

(KDE) and GTK+ (GNOME).

Another important toolkit is the wxWidgets1 toolkit, that provides a platform-independent

set of widgets implemented on X, Motif, GTK, Mac OS, Palm OS, Microsoft Windows, and

several more.

A note on GUI design
The design of the GUI is very important since the GUI guides the user though the applica-

tion logic. A badly designed GUI will confuse the user, making it hard to know what to do

next. Fortunately, there are many good documents and books on this topic. The Macin-

tosh user interface would not have become so successful without a strict style guide that

all application were to follow. Projects like Gnome and KDE also have rather strict

guidelines. Unfortunately, many application designers do not seem to read this informa-

tion, or just assume they know better2.

Introducing

Most widget toolkits can be used from several programming languages, and wxWidgets is

no exception. It is written in C++ but can be used from virtually any language that has the

basic capabilities to interface with C++ libraries. A Perl extension called wxPerl allows Perl

1 Formerly called wxWindows.
2 See, e.g., http://www.frankmahler.de/mshame/

24/10/2005 2

programs to use the wxWidgets toolkit. wxPerl is written and maintained by Mattia Bar-

bon3, hosted on SourceForge4, and supported by an active group of users5.

A typical wxPerl program consists of two parts: the main program, and the wxApplication.

This is a user defined class that derives from the wxWidgets class Wx::App. The wxPerl

program then uses it as follows:

Create an instance of the Wx::App-derived class.
my $app = MyApp->new();

Start processing events.
$app->MainLoop();

After calling MainLoop, Wx takes over control and starts listening for events. When an

event happens, e.g., the user clicks on a button, Wx will dispatch control to the appropri-

ate event handler and start waiting for the next event, and so on.

A simple application could consist of a simple window, a so called frame, and a piece of

text. The definition of the Wx::App derived class, in this example MyApp, would look like:

package MyApp;
use base qw(Wx::App);

sub OnInit {
 my ($self) = shift;
 # Create a new frame.
 my $frame = MyFrame->new();

 # Set it as top frame.
 $self->SetTopWindow($frame);

 # Show it.
 $frame->Show(1);
}

The only method defined in this class is OnInit, a method that gets called automatically

when an instance of the class is created. In this example, OnInit instantiates the MyFrame

class and displays it. MyFrame, as you can guess, implements the application window

(Frame) and its contents:

package MyFrame;
use base qw(Wx::Frame);

This imports some constants.
use Wx qw(wxDefaultPosition wxDefaultSize wxHORIZONTAL);

sub new {

 # New frame with no parent, id -1, title 'Hello, world!'.
 # Default position and size 300, 150.
 my $self = shift->SUPER::new(undef, -1, 'Hello, world!',
 wxDefaultPosition , [350, 100]);

 my $sz = Wx::BoxSizer->new(wxHORIZONTAL);
 my $tx = Wx::StaticText->new($self, -1, 'Hello, World!',
 wxDefaultPosition, wxDefaultSize);
 $sz->Add($tx);
 $self->SetSizer($sz);
 return $self;
}

3 mattia.barbon@libero.it
4 http://wxperl.sourceforge.net
5 wxperl-users@lists.sourceforge.net

24/10/2005 3

Ignoring most details, the constructor of the MyFrame class creates a new Frame, a Box-

Sizer (a kind of generic container) and a StaticText widget. It connects the text widget and

sizer to the frame and returns the newly created MyFrame object. When run, this is how it

looks:

To turn this into a full application would require adding a vast amount of widgets, connect

them, add the logic, and so on. While this is certainly doable (I’ve done it a couple of

times ☺) it’s a tedious job.

Introducing
wxGlade is a user interface designer program for wxWidgets. It is written and maintained

by Alberto Griggio6, hosted on SourceForge7 and actively supported by an active group of

users8. It is capable of generating wxPerl, wxPython and C++ code.

wxGlade works like building blocks, you start with a blank piece of window, called a can-

vas, and you put the individual widgets on it.

6 alberto.griggio@gmail.com
7 wxglade.sourceforge.net
8 wxglade-general@lists.sourceforge.net

24/10/2005 4

widgets

properties

tree view

canvas

preview

In this overview picture, you can see the most relevant components that play a part in

wxGlade.

First, on the top left, the wxGlade widgets panel. It enumerates the widgets supported and

you can click and drop widgets from here on the canvas.

Below the widgets panel is the properties panel. It displays a number of characteristics of

the widget currently being worked upon.

At the right, on top, is the tree structure of the application. As you can see, the application

consists of a frame (frame_1), that contains a sizer (sizer_1), that on its turn contains the

static text widget (label_1).

Below the tree structure is the actual canvas being worked on, called the ‘design view’. It

more or less looks like the actual application, but it is not quite WYSIWYG since it con-

tains some additional handles to play tricks with.

wxGlade provides for an exact preview, you can see it’s window below the design view.

Finally, at the bottom, is the window of the actual application. Not surprisingly it looks

exactly as the manually crafted application shown earlier (since that is what we tried to

achieve). However, this version took just a couple of mouse clicks and keystrokes instead

of having to write a lot of lines of code.

Maintenance and re­generation
Generating a program is just one step. As you can guess, the program logic, i.e., what

must be done when the buttons are pushed, must still be filled in. And what if you need to

change parts of the GUI afterwards?

wxGlade uses a well-known technique of ‘guarded regions’. In the generated code, you

can see several comments that are actually instructions for wxGlade. For example, a con-

structor:

sub new {
 my($self, $parent, $id, $title, $pos, $size, $style, $name) = @_;
 ...
begin wxGlade: MyFrame::new
 $style = wxDEFAULT_DIALOG_STYLE
 unless defined $style;

 ...
end wxGlade
 return $self;
}

The parts between ‘# begin wxGlade’ and ‘# end wxGlade’ are private property. Every

time the program is re-generated this part will completely be overwritten. On the other

hand, everything outside these regions may be freely modified and augmented. This way it

is possible to add application code to the program and still have wxGlade control its own

parts.

Using sizers
One of the major problems with building GUIs is that the user can, or at least should be

able to, move and resize the windows. So it is not just a matter of placing the widgets on

the canvas, more important is what to do when the canvas changes size. Several tech-

24/10/2005 5

niques have been developed over the years to solve this problem. Two popular tech-

niques are springs, where the widgets are tied to the canvas, and to each other, using

stretchable springs, and layout managers, where the widgets are laid out using external

constraints like ‘all on top’, or ‘north east south west’.

wxGlade uses sizers for this purpose. As already mentioned, sizers are some kind of con-

tainer. They can contain other widgets, including sizers. But sizers have two important

properties, called spread and expand. To demonstrate these, let’s assume we have a can-

vas that contains a BoxSizer, that’s a sizer that divides the area into one or more horizontal

or vertical areas. Initially, wxGlade shows this sizer like this:

The area is (evenly) divided in two, empty,

parts.

Now we drop a text widget into each of the

areas. This is how it looks like now:

Since each of the text widgets has its own

default size, which is rather small, the sizer

shrinks to accommodate this. Now, let’s take

a look at the properties of the text widget:

The important properties are ‘Option’ and ‘Expand’. ‘Option’ controls how the available

space is distributed (spread) horizontally over the participating widgets. Currently, it is set

to zero, indicating that no spread is applied for this widget, and its default size must be

used. ‘Expand’ controls whether the widget will expand to the available space vertically.

24/10/2005 6

If we want both widgets to get equal space,

we need to set ‘Option’ to an equal value, e.g., ‘1’.

Finally, by checking ‘Expand’ for both widgets:

When run, or previewed, this is

how it now looks like:

Now, we can resize the window, keeping the placement of the widgets in tact:

Complex situations can be accomplished by carefully crafting sizers within sizers. For

example, this dialog:

24/10/2005 7

It is constructed as follows:

Just a vertical sizer with three slots, the middle slot contains stretchable space.

The top area contains a sizer with a text and border. This sizer is further divided using a

GridSizer. It has rows and columns and you can specify one or more rows and columns to

be growable (stretchable):

The bottom area is divided horizontally

using a sizer, where the third slot is a spacer:

When we resize the window, we see all the parts play together:

24/10/2005 8

spacer

small border spacer

growable
column

flexible
grid sizer

text/border
sizer

Events
In a GUI application events play a crucial role. When the user clicks a button, or types

some text in a text area, events are generated that must be acted upon by the application.

There are many types of events, and complex widgets can generate even more complex

event sequences, but the basic principle is the same: the application program has to desig-

nate an event handler for a particular event, i.e., a subroutine that gets called by the Wx

framework when the event happens. And wxGlade can help with event handlers as well.

Examine a trivial button. On the property sheet, the ‘Event’ tab, there’s a single event

entry: ‘EVT_BUTTON’. This is the event that happens when the user clicks the button. Here

we can supply the name of the callback routine that is to handle the event. Traditionally,

these handlers have names like ‘OnClicked’, ‘OnClose’ and so on. We’ll choose

‘OnOKClicked’ here.

When wxGlade has re-generated the code for the application, it has taken care of setting

up the event handler, and also generated a piece of code for the handler, to be used as a

starting point.

wxGlade: MyDialog2::OnOKClicked <event_handler>
sub OnOKClicked {
 my ($self, $event) = @_;
 $event->Skip;
}

This subroutine effectively does nothing, ‘$event->skip’ just means: not for me, pass this

event to someone else who may be interested. A trivial thing to add would be a ‘warn’

message:

wxGlade: MyDialog2::OnOKClicked <event_handler>
sub OnOKClicked {
 my ($self, $event) = @_;
 warn("User pressed the OK button\n");
}

Conclusions
While building a GUI application still remains a time consuming task, much of the more

tedious parts of the job can be handled by wxGlade. In fact, it would be a very bad idea to

manually code the widgets, sizers, and events since the smallest change in design or lay-

out might require enormous modifications. On the other hand, there’s a limit to what a

tool like wxGlade can do. In the end, it will always be the programmer who decides.

24/10/2005 9

